マントルと地殻の境界（モホ）を決めるもの

阿部 なつ江1,2

What defines the boundary between the mantle and the crust (Moho)

Natsue Abe

1. 国立研究開発法人海洋研究開発機構研究プラットフォーム運用開発部門マントル掘削プロジェクト室
2. 金沢大学大学院自然科学研究科

地殻とマントルの境界「ホロボチッチ不連続面（モホ面）」は、岩石種の違いや変質程度の差、または変形や破砕程度の違いなどで地震波速度が急激に変化する場所である。モホを形成する岩石とその物性については、これまでの科学調査で得られた岩石試料や孔内計測データを元に考察する。

1. はじめに

ホロボチッチ地震波不連続面は、地球内部にある層構造の境界の内、最も浅い部分にある明瞭な物性境界で、陸海問わず地球上のほぼ全ての地域で確認できる。1909年10月9日に起こった地震記録を解析して発見され、発見者のホロボチッチの名を取って“Mohorovicic discontinuity（ホロボチッチ不連続面）”略して“MoHo（モホ面）”と呼ばれ、日本語では反射面を意味して「層面」または「面」を付けることが多いが、数百メートルの深さを持つ「帯」だと考えられる。モホ反射面は、確認される場合とされない場合があるが、複数重複して確認できる場合もある（Fujie et al., 2013；Ohira et al., 2017, 2018など）。マントル掘削では、地殻からモホ面を掘り抜いたことが確認されて初めて、マントルに到達したことになる。マントル物質を手に入れるためには「モホ（面）とは何か？」という問いに対して、掘削以前にできうる限りの研究を行い、仮設を建てておこうが必要であろう。

一般的な海洋モホに関する海域観測データについては、笠原ほか（2008）などに触れられているが、その後、日本海溝や中央太平洋における沈込み前後の海洋プレート上での速度低下の状況（Fujie et al., 2013；2018；2020など）や、太平洋プレート上での多様なモホ面の観測（Ohira et al., 2017；2018など）が進め、より詳細で詳細なモホ面が認識されている。モホを構成する物質要素としては、1）岩相境界、2）同じ岩石種でも変質程度が異なる（蛇紋岩/キャララ岩境界：Hess, 1962）、3）同じ岩石種で変成作用が異なる（斑状岩/エクログレイト境界）、4）岩石種に寄らず破砕度や空隙率が異なるなどの要因が考えられる。後述するように、3の斑状岩/エクログレイト境界を除く
は、明確に否定する根拠が無く、これらの要因の組み合わせがモホ面を形成していると考えられる。モホを形づくる物質は何もいう問いについては、これまでにも阿部・荒井（2007）や荒井・阿部（2008）などでも繰り返し議論しているが、その後の成果を踏まえて考察する。

2. モホを構成するもの？

現在最も支持されているのが「岩相境界」。つまり玄武岩質深成岩である斑状岩（マフィック岩）と、かんらん岩質（超マフィック岩）の境界であるという説である。モホ面よりも下の部分のP波速度（以下Vp）は、大陆か海などによるおよそ8.0 km/s以上である（Prodehl et al., 2013など）。Hess（1964）は、1961年に実施したモホ測計の掘削候補地点における海域調査で、最上部マントルに10％を超える強い速度異方性があることを発見し、かんらん石の結晶異方性と一致することを指摘した。Vpが8 km/s以上で上部マントルに存在しそうな物質には、かんらん石を主体とする岩石（かんらん岩）と、玄武岩質深成岩である斑状岩（軽石および輝石）で構成される岩石（エクシオサイト；超マフィック岩の一種）の2種類がある。Hess（1964）以前は、この2種類のどちらが最上部マントルを構成しているのか議論に決着がついていなかった。エクシオサイトはこの強い異方性を示さないことから、最上部マントルは、かんらん石を主体とするかんらん岩であることがほぼ明らかになった。さらにRingwood and Green（1966）が実施した高圧実験では、玄武岩質深成岩である斑状岩（斜長石と輝石）がエクシオサイトに相転移する圧力が、およそ12 kbar（地下約36 km）であることが分かった。つまり、海洋のモホ層の圧力（約2 kbar）では、下部地殻の岩石は変化し、その下のVp = 8.0 km/sの物質はエクシオサイトではなくかんらん岩であることが、物質科学的にも明らかになった。

3. 海洋下部地殻の多様性

前章の結論から、モホ直下はかんらん岩で構成されていることは疑いないだろう。ではモホ面の多様性（不鮮明、多重、極めて鮮明）はどのような要因で作られるのだろうか？異なる媒質が接しているとき、それぞれの媒質の密度とその媒質を伝わる弾性波速度の積（音響インピーダンス）の差が大きければ大きいほど、反射率は高くなり、反射面が明瞭になる。逆にその差が小さければ、反射率は低く、反射面は不鮮明になる。つまり地殻とマントルそれぞれの音響インピーダンスの差が大きければ大きいほど、モホ反射面は明瞭になる。Hess（1964）が指摘した最上部マントルの異方性の効果を差し引いても、モホ反射面には多様性があることから、反射面の多様性を作るのは、基本的に下部地殻の物性の違いによるものと考えられる。

これまでの海洋科学掘削の結果やオフィオライトの調査から、海洋の下部地殻から最上部マントルは、主に表1に示すような多様の斑状岩を作るかんらん岩で構成されていると考えられている。斑状岩の中で最もかんらん石に富むトロクトライトのVpは、最大7.8 km/sであり、ダナイトの8.3 km/sとあまり差が無く、そのためトロクトライトが地殻最下部にあたる。モホ面は鮮明でない。一方かんらん石に乏しい斑状岩の速度は6.5 km/s程度で、ダナイトの速度との差が大きいため、モホ面は鮮明である。実際に海域調査で観測されている下部地殻のVpも、6.0 km/sから7.5 km/sで幅があり、この差がモホの多様性を生んでいると考えられる。トロクトライトでもかんらん岩

<table>
<thead>
<tr>
<th>広義の岩石種</th>
<th>狭義の岩石種</th>
<th>Vp (km/s)</th>
<th>密度 (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>超マフィック岩</td>
<td>獲れい岩、ノーライト</td>
<td>6.8</td>
<td>2.9</td>
</tr>
<tr>
<td>かんらん岩</td>
<td>かんらん岩</td>
<td>7.5</td>
<td>2.95</td>
</tr>
<tr>
<td>トロクトライト</td>
<td>トロクトライト</td>
<td>7.8</td>
<td>3</td>
</tr>
<tr>
<td>ダナイト</td>
<td>ダナイト</td>
<td>8.3</td>
<td>3.2</td>
</tr>
<tr>
<td>100%超マフィック岩</td>
<td>100%超マフィック岩</td>
<td>5.5</td>
<td>2.6</td>
</tr>
<tr>
<td>30%超マフィック岩</td>
<td>30%超マフィック岩</td>
<td>7.0</td>
<td>3</td>
</tr>
</tbody>
</table>

表1 海洋下部地殻-最上部マントルに想定される岩石種とその物性値。
石が蛇紋岩化した場合、Vp は 5.5 km/s 程度に低下し、モホ反射面は明瞭になることが予想される。東日本弧に沈み込む古い太平洋ブレートにおいて、モホが鮮明なのは、このような変質した下部地殻が原因である可能性がある。

4. 海洋科学掘削における成果

深海科学掘削において、1400 m を超える深掘りは 4 本ある（道林, 2021）。中央海嶺の拡大速度が遅い（低速拡大系）インド洋と大西洋に 1 本ずつ、拡大速度の速い（高速拡大系）太平洋で 2 本掘削されている。低速拡大系ではマグマ供給量に時間的な緩があり、定常にマグマが供給される高速拡大系に比べて、地殻構造が複雑であることが分かっている（Dick et al., 2015 など）。高速拡大系では、マグマ供給量の少ない時期に海嶺が拡大して形成された海洋コアコンプレックスと呼ばれる岩体が形成され（Tucholke et al., 1998; Escartin and Canales, 2011）、斑状岩や蛇紋岩化したかんらん岩などの深成岩が海底に露出していることから、海洋地殻深部物質へのアクセスが容易である。インド洋と大西洋における深掘りの掘削孔から得られた試料は、どちらもほぼ全て斑岩を組み、その下部地殻が成層されている。一方、太平洋の 2 孔は高速拡大軸で形成され、いわゆるオフィオライトと同じ "ペンローズタイプの層序（Anonymous, 1972）" を持つ。
表2 U1309D孔 (大西洋) と 735B孔 (インド洋) から掘削した斑葉岩の岩石学的特徴。

<table>
<thead>
<tr>
<th></th>
<th>U1309D (大西洋)</th>
<th>735B (インド洋)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vp (km/s)</td>
<td>5.8</td>
<td>6.7</td>
</tr>
<tr>
<td>密度 (g/cm³)</td>
<td>2.95</td>
<td>2.98</td>
</tr>
<tr>
<td>かんらん石量 (vol %)</td>
<td>19.7</td>
<td>8</td>
</tr>
<tr>
<td>变換率 (%)</td>
<td>27</td>
<td>13</td>
</tr>
</tbody>
</table>

そのため玄武岩層から岩脈群と掘り進めており, 504B孔は岩脈群の途中まで, 1256D孔ではわずかに掘り進んだ岩層まで掘削しているが玄武岩層と岩脈群が掘り進む主体であった。海洋コアコンプレックスとベーンゾーウソプの掘削は, どちらも未だ礁面前端に達しておりおらず, モホの実体解明には至っていない。しかし Blackman et al. (2019) などに示すように物性研究において, 面白い結果が得られているので紹介しよう。

図1は, インド洋アントランス・バンク (735B孔) とU1473A孔 (11サイド・バンク) に採取された斑葉岩の船上海上物性計測結果である。この2カ所は共に 1400 m 以上掘削され, 高いコア回収率（約 80%) で物性計測が十分実施出来た上に, 図1をみると分かるように, インド洋 (主735B孔) と大西洋 (U1309D孔) の試料は, 密度が 3.0 g/cm³ 程度で差が無いのに, Vp は 1.0 km/s 近い差があることが分かる。これは, 海域の違いと言うよりは, 同じ「斑葉岩類」という下部地殻を構成する岩石であっても, 構成鉱物の量比等遅延存在があり, U1309D孔の試料が, 735B孔のものに比べてかんらん石含有量が低くなることが多く, さらにそのかんらん石の変質程度（蛇紋石化度）にも大きな違いがあることが原因であると考えられる（表2）。一般的に, かんらん石は蛇紋石化するときに, 蛇紋石と磁鉄鉱を形成する。蛇紋石の密度は低く (2.5 g/cm³) Vp が遅い (4.5 km/s) が, 磁鉄鉱は密度が高く (> 4.5 g/cm³) 割に Vp が遅い (6.5 km/s) ことから, 密度の変化無しに Vp のみが低下していると考えられる。

高速拡散プレートにおける斑葉岩掘削が行われたオイス・ディープ (ODP Leg 147とIODP Exp. 345) の成果も図1に示している。オイス・ディープは, 中央海嶺が拡大しかけて停止したために, 上位にあるはずの玄武岩と岩脈群の層が欠損した状態で, 下部地殻相当の斑葉岩と上部マントル相当のかんらん岩（蛇紋岩）が海底に露出している場所である。ここで得られた掘削米料は, 下部地殻のなかでも密度の異なる3種類の斑葉岩が得られている。そして密度が高いほどかんらん石に富む上, 海水と反応して蛇紋石化が起こっているため, Vp が遅くなっているのがハッキリと分かる（図1）。

5. オマーン・オフィオライト陸上掘削の成績

国際陸上科学掘削としてオフィオライトをテーマに2016年12月に始まったオマーン掘削計画 (ICDP Oman Drilling Project; Kelemen et al., 2021; 高澤, 2021) では, オフィオライトの上部地殻, 下部地殻, モホ消滅帯, 上部マントルの各セクションとオフィオライト基底部において300 〜 400 m の断片的な掘削を実施し, 100% の回収率でコアを採取している。この高い回収率のお陰で, 断層帯や変質帯などのこれまでの海洋科学掘削では得られなかった著しく変質した試料や, 破砕された試料の観察や物性測定が可能で, 新しい知見が多く得られている。静岡県清水港に停泊中の地球深部探査船「ちくに」船上ラボにおいて2017年と2018年の合計に4ヶ月間かけて行ったコア試料の記載, 化学分析, 物性測定の結果は、高澤 (2021) にまとめられているので, ここでは, その物性測定に関して述べたい。地殻・マントル境界（CMI）サイトでは, かつてのモホ面に相当する部分を挟む400 m 長の掘削を行い, モホ消滅帯を含むオフィオライトを採取した。図2はそのCMIサイトの岩盤構造と, 船上で計測した岩石物性データを示している。青色系統で示した斑葉岩
岩類を主体とする上位 160 m と、その下の緑色系続で示したかんらん岩を主体とするモホ遷移帯およびマントル・セクションで、予想された値と大きくずれがあることが明瞭に示されている。これは、水との反応によって元々あった海洋地殻・上部マントルの岩石が変質し、物性が大きく変化していることを示している。特に顕著なのは、古モホ面の下で Vp が大きく下がり、5.5 km/s よりも遅い値を示すことである。これほどの Vp の低下は、今のところ海域観測では見つかっていない。これは主にかんらん石 (Vp ≈ 8.0 km/s) が蛇紋石 (Vp ≈ 4.5 km/s) 化したことによる速度の低下であると説明できる。また、Katayama et al. (2020) では、船上で、乾燥状態と薄い塩水で飽和させた状態の電気抵抗率を同一試料で測り、その値の差から透水率を計算によって求めている。その結果は、モホ直下の遷移帯 (ダナイト) の透水率が最も高くなることが示された。

図 2 に示したデータは、「ちきゅう」船に搭載した「万有」観測船ににおける常温・常圧での測定値である。海底下 6 km 程度の深さの圧力では、もっと遅い Vp が期待される。しかし Hatakeyama et al. (2021) によると 200 MPa の加圧条件下の計測値でも、6.0 km/s を超えるような Vp は得られず、古モホ面を挟んだ上下の速度構造は、予想に反して逆転している結果となっている。日本海溝および地殻帯で観測された地下速度構造は、上部マントルが下部マントルに比べて速度が低下している海洋プレートにおいても、このような速度逆転は起こっていない (Fuji et al., 2013 など)。これらの研究結果から、オーラン・オフィオライトに見られるのような最上部マントルの著しい蛇紋岩化作用は、現在の海
6. 亜粒い岩の破碎の可能性

Akamatsu et al. (2021)では、岩粒の脆性変形に伴うクラック形成が、物性を容易に変化するこ
とを着目し、変質していない天然の亜粒い岩やか
なんらん岩試料を用いた常温・加圧（600 MPa まで）
での三軸変形実験（拘束圧 20 MPa）を行い、弾性
波速度を計測した。そしてかなんらん岩に比べて亜
粒い岩の方が細かい亜粒が多く形成され、亜粒い
岩とかなんらん岩で変形による速度の低下率が異な
る事が分かった。試験結果から、亜粒の生成は、変
化条件において、つまり沈み込みやプラット衝突、
またはプラットの移動などによって生じるプレー
ト内の水平方向の応力差によって、下地断層に
速度低下が起こり、上部マントルとの速度および
密度差が大きくなる。そしてこの差が、ホモ反射
面を鮮明にする可能性があることを示している。

このように、亜粒い岩は、それが含むかなんら
ん石の量や、変質（蛇紋岩化）程度、変形（破碎）
程度に地域差があり、弾性波速度や密度に多様性
がある。この多様性が、ホモ反射面の強弱を決め
ていると考えられる。亜粒いのみならず、上部
マントルまで含めて、海水との反応によって蛇
紋岩化されるということは、海洋プレートに水の運
び役となっているに他ならない。Hatakeyama et
al. (2017)の研究結果では、蛇紋岩化した海洋プレー
トが、日本列島などの島弧下に沈み込むときに、
マントルへと水を運び込む作用が続けば、最速で
6 億年程度で地球上の海水が干上がることを示唆
している。どの程度の水が海洋プレートに含みう
るのか、さらに詳しい研究が求められる。

7. まとめ

ホモは、かなんらん岩質の最上部マントルと、そ
の上にあるマフィック岩（亜粒い岩）との境界で
あるというのが、現状での理解である。海洋地殻
であるマフィック岩は、かなんらん岩の部分溶融に
よってできるマグマから形成されることから、地
球内に存在する地球表層物質を作る第一次分離作用で
あると言える。故に岩石学者や地球学者は、海洋
マホン面の深さ（つまり海洋地殻の厚さ）を元に、
マントルが部分溶融によって放出するマグマ生成
量を見積もっている。しかし厳密には、海域のモ
ホン面下のマントルの成因として、マグマかなん
らん岩（マントル）とその反応生成物も存在している
（小澤、2008 など）ため、ホモ深度から見積もる
海洋地殻の厚さをそのままマグマ生成量としてと
らえることは出来ない。掘削によるホモ面付近の
連続サンプリングにおいて、このマグマかなんら
ん岩反応の詳細が明らかになれば、今よりも更に
詳しく、中央海嶺における固体地球のこの一次分
化作用について知ることが出来ると考えられる。
ホモを貫通し、マントルまでの連続孔を掘削する
ことで、地球の分化過程や水の循環についてより
詳しく理解し、地球の将来像の正確な予測が期待
できる。

謝辞: 本稿を執筆するためにあたり、IODP 第 345 次
および 360 次航海乗船者一同、ICDP オーガー掘
削計画参加者一同に深く敬意を表します。本稿の一
部に使用されている同海域および計画の試料分析
データーは、JPS 研究費 18H01321 の助成を受け
て実施されています。

参考文献
[2] Akamatsu, Y. et al. (2021) Changes in elastic wave velocity during brittle deformation of gabbro and peridotite:
[22] 道林元樹 (2021) 深海掘削計画における基盤岩掘削科学の発展. 地学雑誌, 130, 461-482. doi:10.5026/jgeography.130.461
[26] Prodehl, C. et al. (2013) 100 years of seismic research on the Moho, Tectonophysics, In "Moho: 100 years after Andrij Mohorovicic" special issue, 609, 9-44. doi.org/10.1016/j.tecto.2013.05.036.